

Nimbus 6 & 7

Scarab

CERES

ERBE Scanner

CERES
CERES-II Meet 2
Williamsburg
2-4 November 2004

ERBE Non-Scanner

GERB

Part 1: Synopsis of Comparison of Radiation Budget Measurements...

Part 2: NOAA 9 ERBE WFOV Data Set

Comparison of measurements from satellite-borne radiation budget instruments for 1985-2004

G. Louis Smith¹, Robert B. Lee, III²,

Z. Peter Szewczyk³ and David A. Rutan⁴

1 National Institute of Aerospace

2 NASA Langley Research Center

3 Science Applications International Corp.

4 Analytical Services and Materials, Inc.

Time Line of Radiation Data Sets

Traceability for Shortwave

Comparison Summary Shortwave

	erbs Sc	erbs Ns	NOAA 10.5c	ScaRaB 1	CERES/ TRMM	ScaRaB 2	CERES FM-1	CERES FM-2	CERES FM-3	CERES FM-4
ERBS Sc	35	-5.9	-1.1	-5.0	-6.6	-10.1	-6.8	-6.4	-5.7	5.8
erbs ns	4.5) 	-4.8	0.9	-0.7	4.2	0.9	-0.5	0.2	0.1
NOAA 10 Sc	11.7		1829	-3.8	-5.4	-89	-5.6	-4.2	4.5	-3.7
ScaRaB 1	79	6.5		725	-1.6	-5.1	-1.1	1.4	-0.7	-0.8
CERESTRIMM	13.5	12.7	17.9	14.3	277	-3.5	-0.2	0.2	0.0	0.8
ScaRaB 2	15.1	14.4	19.2	15.8	6.9	23	3.3	4.7	4.4	4.3
CERES FM-1	16.4	15.8	20.2	17.1	9.4	11.7	25	0.4	1.1	1.0
CERES FM-2	16.4	15.8	20.2	17.1	9.4	11.7	0.6	3. 31	0.7	0.6
CERES FM-3	16.6	16.0	20.3	17.2	9.6	11.9	2.2	2.3	1	-0.1
CERES FM4	16.6	16.0	20.3	17.2	9.6	11.9	2.2	2.3	0.2	T _E

Part 2: NOAA 9 WFOV Data SET

Kathryn A. Bush, G. Louis Smith and Tak-Meng Wong

NOAA 9 WFOV Data Set

- Data cover period 1985 1992.
- Global coverage.
- Completion and validation of reprocessed data set delayed by improvements to ERBS 15-year data set.
- Study underway of new NOAA 9 data set.
- Major problem of NOAA 9 is precession of orbit to Equator crossing near terminator.

NOAA-9 Equator Crossing Time 8502 - 9212

NOAA-9 Orbit and Data

- Due to precession, there are problems with SW for 1988-1992 for 60°S to 60°N.
- ERBS provides coverage for 60°S to 60°N.
- NOAA-9 provides excellent near-noon data for far north and near-midnight for far south.

NOAA 9 SWR Flux Anomaly First EOF

Second Principal Components of NOAA-9 SWR Anomaly 8502 - 9212 60N - 60S Latitude

NOAA 9 SWR Flux Anomaly Second EOF

Third Principal Components of NOAA-9 SWR Anomaly 8502 - 9212 60N - 60S Latitude

CERES-II Meet 2 Williamsburg 2-4 November 2004

Results from SW Study

- SW PC-1 is an artifact of a nearly uniform darkening (up to 12 W-m⁻²) of the Earth as the S/C precesses to a sun-set Equator crossing.
- SW PC-2 shows ENSOs of '87 & '92.
- SW PC-3 is a combination of an artifact of precession and ENSOs.
- Identification and quantification of artifacts provides a method of elimination.

First Principal Components of NOAA-9 OLR Anomaly

8502 - 9212 60N - 60S Latitude

NOAA 9 LW Flux Anomaly First EOF

Second Principal Components of NOAA-9 OLR Anomaly 8502 - 9212 60N - 60S Latitude

NOAA 9 LW Flux Anomaly Second EOF

Third Principal Components of NOAA-9 OLR Anomaly

8502 - 9212 60N - 60S Latitude

NOAA 9 LW Flux Anomaly Third EOF

Results from LW Study

- LW PC-1 shows ENSOs for 1986-7, 1989-90 and 1991-2.
- LW PC-2 is an artifact of precession.
- LW PC-3 is an artifact of precession.
- These artifacts can be removed.

Mission Summary—NOAA-10

- NOAA-10 launched September 17, 1986
 - Scanner operated until May 21, 1989.
 - Nonscanner operated until November 1994.
 - Spacecraft pitchover and ERBE deep-space calibration performed January 12-13, 1995.
 - Due to near-terminator orbit, little emphasis given to NOAA-10 data because of other concerns.
 - Data are good for high latitudes: Noon near South Pole, Midnight near North Pole.

Future Work

- Complete validation of NOAA 9 WFOV 1985-mid 1988 data set and put in Public Domain.
- Apply technique for removing precession artifacts from latter part of data set.
- Complete processing and validation of NOAA 10 WFOV data set and put in Public Domain.
- These are a damned-sight better Earth Radiation Budget data than Moonshine!

